4-2 Unit Circle

Definitions of the Trigonometric Functions in Terms of a Unit Circle

If t is a real number and $P = (x, y)$ is a point on the unit circle that corresponds to t, then

\[
\begin{align*}
\sin t &= y \\
\csc t &= \frac{1}{y}, y \neq 0 \\
\cos t &= x \\
\sec t &= \frac{1}{x}, x \neq 0 \\
\tan t &= \frac{y}{x}, x \neq 0 \\
\cot t &= \frac{x}{y}, y \neq 0.
\end{align*}
\]
Angles on the Unit Circle

A circle with a radius of 1.

The Unit Circle Hand Trick
4.2 Unit Circle

January 18, 2017

EXAMPLE 3 Finding Values of the Trigonometric Functions

at $t = \frac{\pi}{4}$

Find $\sin \frac{\pi}{4}$, $\cos \frac{\pi}{4}$, and $\tan \frac{\pi}{4}$.
4.2 Unit Circle

Check Point 3 Find \(\csc \frac{\pi}{4}, \sec \frac{\pi}{4}, \) and \(\cot \frac{\pi}{4}. \)

Even and Odd Trigonometric Functions

The cosine and secant functions are even.

\[
\cos(-t) = \cos t \quad \sec(-t) = \sec t
\]

The sine, cosecant, tangent, and cotangent functions are odd.

\[
\sin(-t) = -\sin t \quad \csc(-t) = -\csc t \\
\tan(-t) = -\tan t \quad \cot(-t) = -\cot t
\]

EXAMPLE 4 Using Even and Odd Functions to Find Values of Trigonometric Functions

Find the value of each trigonometric function:

a. \(\cos\left(-\frac{\pi}{4}\right) \)

b. \(\tan\left(-\frac{\pi}{4}\right) \)
Check Point 4 Find the value of each trigonometric function:

a. \(\sec \left(-\frac{\pi}{4} \right) \)
b. \(\sin \left(-\frac{\pi}{4} \right) \).

Fundamental Identities

Reciprocal Identities

\[
\begin{align*}
\sin t &= \frac{1}{\csc t} \\
\cos t &= \frac{1}{\sec t} \\
\tan t &= \frac{1}{\cot t} \\
\csc t &= \frac{1}{\sin t} \\
\sec t &= \frac{1}{\cos t} \\
\cot t &= \frac{1}{\tan t}
\end{align*}
\]

Quotient Identities

\[
\begin{align*}
\tan t &= \frac{\sin t}{\cos t} \\
\cot t &= \frac{\cos t}{\sin t}
\end{align*}
\]
4.2 Unit Circle

Example 5 Using Quotient and Reciprocal Identities

Given \(\sin t = \frac{2}{5} \) and \(\cos t = \frac{\sqrt{21}}{5} \), find the value of each of the four remaining trigonometric functions.

Check Point 5 Given \(\sin t = \frac{2}{3} \) and \(\cos t = \frac{\sqrt{5}}{3} \), find the value of each of the four remaining trigonometric functions.
Pythagorean Identities

\[\sin^2 t + \cos^2 t = 1 \quad 1 + \tan^2 t = \sec^2 t \quad 1 + \cot^2 t = \csc^2 t \]

EXAMPLE 6 Using a Pythagorean Identity

Given that \(\sin t = \frac{3}{5} \) and \(0 < t < \frac{\pi}{2} \), find the value of \(\cos t \) using a trigonometric identity.

Check Point 6 Given that \(\sin t = \frac{1}{2} \) and \(0 < t < \frac{\pi}{2} \), find the value of \(\cos t \) using a trigonometric identity.
Periodic Properties of the Sine and Cosine Functions

\[\sin(t + 2\pi) = \sin t \quad \text{and} \quad \cos(t + 2\pi) = \cos t \]

The sine and cosine functions are periodic functions and have period \(2\pi\).

Periodic Properties of the Tangent and Cotangent Functions

\[\tan(t + \pi) = \tan t \quad \text{and} \quad \cot(t + \pi) = \cot t \]

The tangent and cotangent functions are periodic functions and have period \(\pi\).

EXAMPLE 7 Using Periodic Properties

Find the value of each trigonometric function:

a. \(\sin \frac{9\pi}{4}\)

b. \(\tan \left(-\frac{5\pi}{4}\right)\).
Check Point 7 Find the value of each trigonometric function:

a. \(\cot \frac{5\pi}{4} \)

b. \(\cos \left(-\frac{9\pi}{4} \right) \)

Assignment

page 520

1, 9, 13, 19, 23, 25, 29, 35, 39, 47, 51, 61, 69, 71, 75